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The PANCAN Curse

 Integrating data is hard

 Methods get very
complicated very quickly

Danger Sign- Bruce
Stockwell, CC-BY2.0
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“Simple models and a lot of data trump
more elaborate models based on less
data.”

\

-Peter Norvig,
Google Director of Research
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How do we break the
PANCAN curse?

Incremental and transparent methods
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What differentiates
cancers”?
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A simple model of
differential expression

o Expression profile for single gene across PANCAN cohort
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- Filter unmatched patients
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Observe sign of change from tumor
to normal tissue
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— Count fraction of cohort with
over-expression of gene

mMRNA expression




A simple model of
differential expression

Fraction over-expressed: fraction of
patients in a cohort with over-expression of a
gene

Null Hypothesis: F g = 50%, gene is
unchanged in tumor cells
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A simple model of
differential expression

Advantages:

- Not sensitive to tissue-specific 20
baseline expression

- Easy to interpret test statistic

- Easy to integrate across tissues,
data-layers

- No statistical assumptions
Disadvantages: TCGA breast cohort (n=111)
—30/(° spearman correlation = .99

- Not sensitive to magnitude 00 E =
of differential expression Fraction overexpressed

Paired t-statistic

— Less Powered?
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What do all cancers
have In common?

« Methylation: 704 matched patients
« MRNA: 650 matched patients
« mIRNA: 628 matched patients



ADH1B mRNA

What do all cancers
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- Methylation
= MRNA

ADH1B is —— MiRNA
up-regulated

in 4% of
tumors \
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Mir-21 is up-
regulated in
93% of tumors
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What do all cancers
have In common?

- Methylation

= MRNA - Promoter

— miRNA —— CpG Island
= PRC2

Functional Enrichment
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Density

8 microarray datasets, 923 subjects
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Hypothesis:

Genes turned on in the tumors
will have levels associated with
tumor growth and proliferation.



Correlation of profiles
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Correlation of profiles
with tumor signature
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Correlation of profiles
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What changes are
tissue specific?
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What changes are
driver specific?
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What changes are
driver specific?
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Summary

* We describe a simple analysis method for
studying the tumor phenotype

« We define a list of differentially expressed
genes, mIRNA and methylation sites in a pan-
cancer context

 We use these features to stratify patient
outcomes and define tissue and driver specific
changes in cancer
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